Tag Archives: gear bevel gear

China wholesaler High Torque Cast Iron Shell Wp Wpa Wpo Series Gear Box Transmission DC Motor Worm Speed Reducer Small Engine Gearbox bevel gearbox

Product Description

 

Product Parameters

Model Ratio

10

15

20

25

30

40

50

60

40

0.4

0.33

0.26

0.24

0.22

0.16

0.14

o.12

50

0.65

0.52

0.40

0.37

0.34

0.27

0.24

0.20

60

1.00

0.82

0.65

0.59

0.54

0.45

0.40

0.32

70

1.60

1.35

1.10

0.96

0.82

0.67

0.61

0.52

80

2.20

1.78

1.36

1.28

1.20

0.90

0.80

0.75

100

3.60

3.10

2.60

2.35

2.10

1.68

1.30

1.00

120

5.20

4.35

3.50

3.25

3.00

2.20

1.90

1.50

135

9.75

7.85

6.00

5.50

5.00

3.69

2.89

2.30

147

10.71

8.43

6.18

5.71

5.23

3.84

3.09

2.52

155

12.80

9.90

7.00

6.53

6.00

4.40

3.61

3.00

175

17.30

13.60

10.00

9.13

8.30

6.18

4.85

4.07

200

22.60

18.20

13.86

12.75

11.67

8.78

6.71

5.58

250

33.20

27.40

21.60

20.00

18.43

14.00

10.43

8.62

Product Description

Product Description

(1)Worm gear reducer is a power transmission mechanism, the use of gear speed converter, the motor (motor) the number of rotation to slow down to the number of rotation, and get a larger torque mechanism. At present, the application of speed reducer is widely used in the mechanism of transmitting power and motion.

(2)In all kinds of mechanical transmission system can see traces of it, from the transport ships, automobiles, motorcycles, construction heavy machinery, industrial machinery processing equipment and automated production equipment, to the common daily life appliances, clocks and watches, and so forth. Its application from the transmission of large power, to a small load, the precision of the angle of transmission can be seen in the application, and in industrial applications, the reducer has a reduction and increase the torque function. So it is widely used in speed and torque conversion equipmen

 

The role of main reducer:

1, reduce speed and increase the output torque, torque output ratio of motor output by the deceleration ratio, but should pay attention to not exceed the speed reducer rated torque.
2, deceleration while reducing the load inertia, inertia is reduced to the square of the reduction ratio. We can look at the General Motors has a value of inertia.

 

 

 

Company Profile

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Electric Cars, Motorcycle, Agricultural Machinery, Car, Power Transmission
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Type: Worm Gear Box
Customized Support: OEM, ODM, Obm
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

worm gearbox

Common Problems and Troubleshooting for Worm Gearboxes

Worm gearboxes, like any mechanical component, can experience various issues over time. Here are some common problems that may arise and possible troubleshooting steps:

  • Overheating: Overheating can occur due to factors such as inadequate lubrication, excessive loads, or high operating temperatures. Check lubrication levels, ensure proper ventilation, and reduce loads if necessary.
  • Noise and Vibration: Excessive noise and vibration may result from misalignment, worn gears, or improper meshing. Check for misalignment, inspect gear teeth for wear, and ensure proper gear meshing.
  • Leakage: Oil leakage can be caused by damaged seals or gaskets. Inspect seals and gaskets, and replace them if necessary.
  • Reduced Efficiency: Efficiency loss can occur due to friction, wear, or misalignment. Regularly monitor gearbox performance, ensure proper lubrication, and address any wear or misalignment issues.
  • Backlash: Excessive backlash can affect precision and accuracy. Adjust gear meshing and reduce backlash to improve performance.
  • Seizure or Binding: Seizure or binding can result from inadequate lubrication, debris, or misalignment. Clean the gearbox, ensure proper lubrication, and address misalignment issues.
  • Worn Gears: Worn gear teeth can lead to poor performance. Regularly inspect gears for signs of wear, and replace worn gears as needed.
  • Seal Wear: Seals can wear over time, leading to leakage and contamination. Inspect seals regularly and replace them if necessary.

If you encounter any of these problems, it’s important to address them promptly to prevent further damage and maintain the performance of your worm gearbox. Regular maintenance, proper lubrication, and addressing issues early can help extend the lifespan and reliability of the gearbox.

worm gearbox

How to Calculate the Efficiency of a Worm Gearbox

Calculating the efficiency of a worm gearbox involves determining the ratio of output power to input power. Efficiency is a measure of how well the gearbox converts input power into useful output power without losses. Here’s how to calculate it:

  • Step 1: Measure Input Power: Measure the input power (Pin) using a power meter or other suitable measuring equipment.
  • Step 2: Measure Output Power: Measure the output power (Pout) that the gearbox is delivering to the load.
  • Step 3: Calculate Efficiency: Calculate the efficiency (η) using the formula: Efficiency (η) = (Output Power / Input Power) * 100%

For example, if the input power is 1000 watts and the output power is 850 watts, the efficiency would be (850 / 1000) * 100% = 85%.

It’s important to note that efficiencies can vary based on factors such as gear design, lubrication, wear, and load conditions. The calculated efficiency provides insight into how effectively the gearbox is converting power, but it’s always a good practice to refer to manufacturer specifications for gearbox efficiency ratings.

worm gearbox

How Does a Worm Gearbox Compare to Other Types of Gearboxes?

Worm gearboxes offer unique advantages and characteristics that set them apart from other types of gearboxes. Here’s a comparison between worm gearboxes and some other common types:

  • Helical Gearbox: Worm gearboxes have higher torque multiplication, making them suitable for heavy-load applications, while helical gearboxes are more efficient and offer smoother operation.
  • Bevel Gearbox: Worm gearboxes are compact and can transmit motion at right angles, similar to bevel gearboxes, but worm gearboxes have self-locking capabilities.
  • Planetary Gearbox: Worm gearboxes provide high torque output and are cost-effective for applications with high reduction ratios, whereas planetary gearboxes offer higher efficiency and can handle higher input speeds.
  • Spur Gearbox: Worm gearboxes have better shock load resistance due to their sliding motion, while spur gearboxes are more efficient and suitable for lower torque applications.
  • Cycloidal Gearbox: Cycloidal gearboxes have high shock load capacity and compact design, but worm gearboxes are more cost-effective and can handle higher reduction ratios.

While worm gearboxes have advantages such as high torque output, compact design, and self-locking capability, the choice between gearbox types depends on the specific requirements of the application, including torque, efficiency, speed, and space limitations.

China wholesaler High Torque Cast Iron Shell Wp Wpa Wpo Series Gear Box Transmission DC Motor Worm Speed Reducer Small Engine Gearbox   bevel gearbox	China wholesaler High Torque Cast Iron Shell Wp Wpa Wpo Series Gear Box Transmission DC Motor Worm Speed Reducer Small Engine Gearbox   bevel gearbox
editor by CX 2024-03-06

China Professional Factory Manufacture Plant Involute Spur Worm R Series Speed Helical Bevel Gear Reducer Planetary Gear Boxes comer gearbox

Product Description

R Series Helical Gear Electric Motor Speed Reducer with 220V geared motor

 

R Series Rigid Tooth Flank Helical Gear Reducer  

Small size, light weight, large transmission torque, superior performance, stable
operation, low noise, durable, can be installed in a variety of ways, can be matched with different types of motors, a wide range
of applications. Optional vertical flange installation, commonly used in mixing equipment.

Please tell me the ratio, input power and output torque.

I will help you to confirm the specific model.

1,Motor

2,Bolt

3,Washer

4,Lifting ring

5,Cap Screw

6,Vent Cap

7,Cover

8,Sealing shim

9,Parallel Key

10,Output shaft

11,Parallel Key

12,Circlip for hole

13,Skeleton oil seal

14,Gear

15,Bearing sleeve

16,Bear

17,Parallel Key

18,Gear

19,Plane Oil Seal

20,Circlip for hole

21,Gear

22,Gear Shaft

23,Plane Oil Seal

24,Circlip for hole

25,Bearing

26,Gear Shaft

27,Parallel Key

28,Bearing

29,Gear

30,Bearing

31,Circlip for hole

32,Bearing sleeve

33,Bearing

34,Bearing

35,Circlip for shaft

36,Plug cock

37,Oil mirror

38,Case

39,Circlip for shaft

40,Gear

 

 

Series:

R Series Helical Gear Reducer

Specifications:

17,27,37,47,57,67,77,87,97,107,137,147,167,177

Transmission Ratio:

1.3~289.74

Input Power (KW):

0.12~160

Output Torque (N.m):

3.5~23200

 

Product Description

 

R Series reducers are designed and manufactured on the basis of modular combination system.
There are a lot of motor combinations, installation forms and structural schemes. The transmission
ratio is classified and fine to meet different operating conditions, and the performance is superior.
Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface
is carburized, quenched and hardened, and the gear is finely ground. It has stable transmission, low
noise, and large bearing capacity. Low temperature rise, long service life. It is widely used in metallurgy,

Detailed Photos

 


 

Company Profile

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

worm gearbox

Self-Locking Properties in a Worm Gearbox

Yes, worm gearboxes exhibit self-locking properties, which can be advantageous in certain applications. Self-locking refers to the ability of a mechanism to prevent the transmission of motion from the output shaft back to the input shaft when the system is at rest. Worm gearboxes inherently possess self-locking properties due to the unique design of the worm gear and worm wheel.

The self-locking behavior arises from the angle of the helix on the worm shaft. In a properly designed worm gearbox, the helix angle of the worm is such that it creates a mechanical advantage that resists reverse motion. When the gearbox is not actively driven, the friction between the worm threads and the worm wheel teeth creates a locking effect.

This self-locking feature makes worm gearboxes particularly useful in applications where holding a load in position without external power is necessary. For instance, they are commonly used in situations where there’s a need to prevent a mechanism from backdriving, such as in conveyor systems, hoists, and jacks.

However, it’s important to note that while self-locking properties can be beneficial, they also introduce some challenges. The high friction between the worm gear and worm wheel during self-locking can lead to higher wear and heat generation. Additionally, the self-locking effect can reduce the efficiency of the gearbox when it’s actively transmitting motion.

When considering the use of a worm gearbox for a specific application, it’s crucial to carefully analyze the balance between self-locking capabilities and other performance factors to ensure optimal operation.

worm gearbox

Worm Gearbox Applications in Robotics and Automation

Worm gearboxes play a crucial role in various robotics and automation applications due to their unique characteristics and benefits. Here are some common applications where worm gearboxes are used:

  • Robotic Arm Movement: Worm gearboxes are employed in robotic arms to provide precise and controlled movement. The self-locking property of worm gearboxes helps maintain the arm’s position without requiring additional brakes.
  • Conveyor Systems: In automated production lines, worm gearboxes are used to drive conveyor belts and move materials or products along assembly lines with accuracy.
  • Precision Positioning: Worm gearboxes are used in precision positioning systems, such as those found in pick-and-place robots and CNC machines. They ensure accurate and repeatable movements.
  • Pan and Tilt Mechanisms: Worm gearboxes are utilized in pan and tilt mechanisms of surveillance cameras, robotic cameras, and sensors. The self-locking feature helps stabilize and maintain the desired angle.
  • Automated Gates and Doors: Worm gearboxes are used in automated gate and door systems to control their opening and closing movements smoothly and safely.
  • Material Handling: Robots in warehouses and distribution centers use worm gearboxes to manipulate and lift objects, enhancing efficiency in material handling.
  • Medical Robotics: Worm gearboxes are employed in medical robots for surgical procedures, diagnostic equipment, and rehabilitation devices, ensuring precise and controlled movements.
  • Industrial Robots: Industrial robots rely on worm gearboxes for various tasks, including welding, painting, assembly, and packaging, where precise movements are essential.
  • Automated Testing Equipment: In testing and inspection applications, worm gearboxes provide the necessary movement and positioning for accurate testing and measurements.
  • Food and Beverage Industry: Worm gearboxes are used in automated food processing and packaging systems, ensuring hygienic and precise movement of products.

Worm gearboxes are preferred in these applications due to their compact size, high torque output, self-locking feature, and ability to provide a right-angle drive. However, selecting the right gearbox requires considering factors such as load, speed, efficiency, and environmental conditions.

worm gearbox

Types of Worm Gear Configurations and Their Uses

Worm gear configurations vary based on the arrangement of the worm and the gear it engages with. Here are common types and their applications:

  • Single Enveloping Worm Gear: This configuration offers high torque transmission and efficiency. It’s used in heavy-duty applications like mining equipment and industrial machinery.
  • Double Enveloping Worm Gear: With increased contact area, this type provides higher load capacity and improved efficiency. It’s used in aerospace applications, robotics, and precision machinery.
  • Non-Throated Worm Gear: This type has a cylindrical worm without a throat. It’s suitable for applications requiring precise motion control, such as CNC machines and robotics.
  • Throated Worm Gear: Featuring a throat in the worm, this configuration offers smooth engagement and higher load capacity. It’s used in conveyors, elevators, and automotive applications.
  • Non-Modular Worm Gear: In this design, the worm and gear are a matched set, resulting in better meshing and efficiency. It’s utilized in various industries where customization is essential.
  • Modular Worm Gear: This type allows interchangeability of worm and gear components, providing flexibility in design and maintenance. It’s commonly used in conveyors, mixers, and material handling systems.

Selecting the appropriate worm gear configuration depends on factors such as load capacity, efficiency, precision, and application requirements. Consulting gearbox experts can help determine the best configuration for your specific needs.

China Professional Factory Manufacture Plant Involute Spur Worm R Series Speed Helical Bevel Gear Reducer Planetary Gear Boxes   comer gearbox	China Professional Factory Manufacture Plant Involute Spur Worm R Series Speed Helical Bevel Gear Reducer Planetary Gear Boxes   comer gearbox
editor by CX 2024-02-22